snabelen.no er en av mange uavhengige Mastodon-servere du kan bruke for å delta i det desentraliserte sosiale nettet.
Ein norsk heimstad for den desentraliserte mikroblogge-plattformen.

Administrert av:

Serverstatistikk:

371
aktive brukere

#jmeter

0 innlegg0 deltakere0 innlegg i dag

I need help. First the question: On #FreeBSD, with all ports built with #LibreSSL, can I somehow use the #clang #thread #sanitizer on a binary actually using LibreSSL and get sane output?

What I now observe debugging #swad:

- A version built with #OpenSSL (from base) doesn't crash. At least I tried very hard, really stressing it with #jmeter, to no avail. Built with LibreSSL, it does crash.
- Less relevant: the OpenSSL version also performs slightly better, but needs almost twice the RAM
- The thread sanitizer finds nothing to complain when built with OpenSSL
- It complains a lot with LibreSSL, but the reports look "fishy", e.g. it seems to intercept some OpenSSL API functions (like SHA384_Final)
- It even complains when running with a single-thread event loop.
- I use a single SSL_CTX per listening socket, creating SSL objects from it per connection ... also with multithreading; according to a few sources, this should be supported and safe.
- I can't imagine doing that on a *single* thread could break with LibreSSL, I mean, this would make SSL_CTX pretty much pointless
- I *could* imagine sharing the SSL_CTX with multiple threads to create their SSL objects from *might* not be safe with LibreSSL, but no idea how to verify as long as the thread sanitizer gives me "delusional" output 😳

Finally getting somewhere working on the next evolution step for #swad. I have a first version that (normally 🙈) doesn't crash quickly (so, no release yet, but it's available on the master branch).

The good news: It's indeed an improvement to have *multiple* parallel #reactor (event-loop) threads. It now handles 3000 requests per second on the same hardware, with overall good response times and without any errors. I uploaded the results of the stress test here:

zirias.github.io/swad/stress/

The bad news ... well, there are multiple.

1. It got even more memory hungry. The new stress test still simulates 1000 distinct clients (trying to do more fails on my machine as #jmeter can't create new threads any more...), but with delays reduced to 1/3 and doing 100 iterations each. This now leaves it with a resident set of almost 270 MiB ... tuning #jemalloc on #FreeBSD to return memory more promptly reduces this to 187 MiB (which is still a lot) and reduces performance a bit (some requests run into 429, overall response times are worse). I have no idea yet where to start trying to improve *this*.

2. It requires tuning to manage that load without errors, mainly using more threads for the thread pool, although *these* threads stay almost idle ... which probably means I have to find ways to make putting work on and off these threads more efficient. At least I have some ideas.

3. I've seen a crash which only happened once so far, no idea as of now how to reproduce. *sigh*. Massively parallel code in C really is a PITA.

Seems the more I improve here, the more I find that *should* also be improved. 🤪

zirias.github.ioApache JMeter Dashboard